MONET publications are both distinctive in scope and distinct from other funded research of Center members; all publications acknowledge MONET and the NSF CCI program as the sole source of federal funding for MONET senior investigators.


38. J Zhao, EO Bobylev, DJ Lundberg, NJ Oldenhuis, H Weng, I Kevlishvili, SL Craig, HJ Kulik, X Li, and JA Johnson, “Polymer Networks with Cubic, Mixed Pd(II) and Pt(II) M6L12 Metal–Organic Cage Junctions: Synthesis and Stress Relaxation Behavior,” J. Am. Chem. Soc., in press (2023) doi: 10.1021/jacs.3c06029

37. PN Johnson, Y Yao, X Huang, I Kevlishvili, S Schrettl, S Weder, HJ Kulik, and SL Craig, “Metal identity effects in the fracture behavior of coordinatively crosslinked elastomers,” Polymer, 285, 126337 (2023) doi: 10.1016/j.polymer.2023.126337

36. K Wentz, Y Yao, I Kevlishvili, TB Kouznetsova, BA Mediavilla, HJ Kulik, SL Craig, and RS Klausen, “Systematic Investigation of Silicon Substitution on Single Macromolecule Mechanics,” Macromolecules, 56, 6776–6782 (2023) doi: 10.1021/acs.macromol.3c01066

35. CM Brown, KEL Husted, Y Wang, LJ Kilgallon, P Shieh, H Zafar, DJ Lundberg, and JA Johnson, “Thiol-Triggered Deconstruction of Bifunctional Silyl Ether Terpolymers via an SNAr-Triggered Cascade,” Chem. Sci., 14, 8869-8877 (2023) doi: 10.1039/D3SC02868B

34. S Danielsen, “Chemical Compatibilization, Macro-, and Microphase Separation of Heteroassociative Polymers,” Macromolecules, 56, 6527–6542 (2023) doi: 10.1021/acs.macromol.3c00864

33. SPO Danielsen, AN Semenov, and M Rubinstein, “Phase Separation and Gelation in Solutions and Blends of Heteroassociative Polymers,” Macromolecules, 56, 5661-5677 (2023) doi: 10.1021/acs.macromol.3c00854

32. L Sapir, J Brock, D Chen, Q Liao, S Panyukov, and M Rubinstein, “How a Chain Can Be Extended While Its Bonds Are Compressed,” ACS Macro Lett., 12, 894-900 (2023) doi: 10.1021/acsmacrolett.3c00097

31. S Wang, Y Hu, TB Kouznetsova, L Sapir, D Chen, A Herzog-Arbeitman, JA Johnson, M Rubinstein, and SL Craig, “Facile Mechanochemical Cycloreversion of Polymer Cross-linkers Enhances Tear Resistance,” Science, 380, 1248-1252 (2023) doi: 10.1126/science.adg3229

30. V Zhang, JV Accardo, I Kevlishvili, EF Woods, SJ Chapman, CT Eckdahl, CL Stern, HJ Kulik, and JA Kalow, “Tailoring dynamic hydrogels by controlling associative exchange rates,” Chem, (2023) doi: 10.1016/j.chempr.2023.05.018

29. RM Caballero, I González-Gamboa, SL Craig, and NF Steinmetz, “Linear and Multivalent PEGylation of Tobacco Mosaic Virus and the Effects on its Biological Properties,” Front. Virol., 3 (2003) doi: 10.3389/fviro.2023.1184095

28. H. Wakefield IV, I. Kevlishvili, K.E. Wentz, Y. Yao, T.B. Kouznetsova, S.J. Melvin, E.G. Amrosious, A. Herzog-Arbeitman, M.A. Siegler, J.A. Johnson, S.L. Craig, H.J. Kulik, and R.S. Klausen, “Synthesis and Ring-Opening Metathesis Polymerization of a Strained trans-Silacycloheptene and Single-Molecule Mechanics of Its Polymer,” J. Am. Chem. Soc., 145, 10187-10196 (2023) doi: 10.1021/jacs.3c01004

27. T. Ouchi, W. Wang, B. Silverstein, J.A. Johnson, and S.L. Craig, “Effect of Strand Molecular Length on Mechanochemical Transduction on Elastomers Probed With Uniform Force Sensors,” Polym. Chem., 14, 1646 – 1655 (2023) doi: 10.1039/D3PY00065F

26. J. Wang, T. B. Kouznetsova, J. Xia, F. Jiménez Ángeles, M. Olvera de la Cruz, and S. L. Craig, “A Polyelectrolyte Handle for Single-Molecule Force Spectroscopy,” J. Polym. Sci. (2023) doi: 10.1002/pol.20230051

25. S. Wang, S. Panyukov, S.L. Craig, and M. Rubinstein, “Contribution of Unbroken Strands to the Fracture of Polymer Networks,” Macromolecules, (2023) doi: 10.1021/acs.macromol.2c02139

24. D. Chen, S. Panyukov, L. Sapir, and M. Rubinstein, “Elasticity of Slide-Ring Gels”, ACS Macro Lett., 12, 362-368 (2023) doi: 10.1021/acsmacrolett.3c00010

23. H.K. Beech, J.A. Johnson, and B.D. Olsen, “Conformation of Network Strands in Polymer Gels”, ACS Macro Lett., 12, 325-330 (2023) doi: 10.1021/acsmacrolett.3c00006

22. K.E.L. Husted, C.M. Brown, P. Shieh, I. Kevlishvili, S.L. Kristufek, H. Zafar, J.V. Accardo, J.C. Cooper, R.S. Klausen, H.J. Kulik, J.S. Moore, N.R. Sottos, J.A. Kalow, and J.A. Johnson, “Remolding and Deconstruction of Industrial Thermosets via Carboxylic Acid-Catalyzed Bifunctional Silyl Ether Exchange”, J. Am. Chem. Soc., 145, 1916-1923 (2023) doi: 10.1021/jacs.2c11858

21. J. Wong, S. Wie, R. Meir, N. Sadaba, N.A. Ballinger, E.K. Harmon, X. Gao, G. Altin-Yavuzarslan, L.D. Pozzo, L.M. Campos, and A. Nelson, “Triplet Fusion Upconversion for Photocuring 3D Printed Particle-Reinforced Composite Networks”, Advanced Materials,  (2023) doi: 10.1002/adma.202207673

20. E.M. Lloyd, J.R. Vakil, Y. Yao, N.R. Sottos, and S.L. Craig, “Covalent Mechanochemistry and Contemporary Polymer Network Chemistry: A Marriage in the Making”, J. Am. Chem. Soc., 145, 751-768 (2023) doi: 10.1021/jacs.2c09623

19. E.M. Lloyd, J.C. Cooper, P. Shieh, D.G. Ivanoff, N.A. Parikh, E.B. Mejia, K.E.L. Husted, L.C. Costa, N.R. Sottos, J.A. Johnson, and J.S. Moore, “Efficient Manufacture, Deconstruction, and Upcycling of High-Performance Thermosets and Composites”, ACS Appl. Eng. Mater., 1, 477-485 (2022) doi: 10.1021/acsaenm.2c00115

18. V. Zhang, B. Kang , J.V. Accardo, and J.A. Kalow, “Structure–reactivity–property relationships in covalent adaptable networks.” J. Am. Chem. Soc., 144, 22358-22377 (2022) doi: 10.1021/jacs.2c08104

17. D. Xu, B.D. Olsen, and S.L. Craig, “Relaxation dynamics of supramolecular polymer networks with mixed cross-linkers”, J. Rheol., 66, 1193-1201 (2022) doi: 10.1122/8.0000421

16. W. Zou, A.M. Monterroza, Y. Yao, S.C. Millik, M.M. Cencer, N.J. Rebello, H.K. Beech, M.A. Morris, T-S. Lin, C.S. Castano, J.A. Kalow, S.L. Craig, A. Nelson, J.S. Moore, and B.D. Olsen, “Extending BigSMILES to non-covalent bonds in supramolecular polymer assemblies”, Chem. Sci., 13, 12045-12055 (2022) doi: 10.1039/D2SC02257E

15. C.M. Brown, D.J. Lundberg, J.R. Lamb, I. Kevlishvili, D. Kleinschmidt, Y.S. Alfaraj, H.J. Kulik, M.F. Ottaviani, N.J. Oldenhuis, and J.A. Johnson, “Endohedrally Functionalized Metal–Organic Cage-Cross-Linked Polymer Gels as Modular Heterogeneous Catalysts”, J. Am. Chem. Soc., 144, 13276–13284 (2022) doi: 10.1021/jacs.2c04289

14. T. Yamamoto, J.A. Campbell, S. Panyukov, and M. Rubinstein, “Scaling Theory of Swelling and Deswelling of Polymer Networks”, Macromolecules, 55, 3588–3601 (2022) doi: 10.1021/acs.macromol.1c02553

13. C.I. Nkanga, O.A. Ortega-Rivera, M.D. Shin, M.A. Moreno-Gonzalez, and N.F. Steinmetz, “Injectable Slow-Release Hydrogel Formulation of a Plant Virus-Based COVID-19 Vaccine Candidate”, Biomacromolecules, 23, 1812-1825 (2022) doi: 10.1021/acs.biomac.2c00112

12. Y. Sun, W.J. Neary, Z.P. Burke, H. Qian, L. Zhu, and J.S. Moore, “Mechanically Triggered Carbon Monoxide Release with Turn-On Aggregation-Induced Emission”, J. Am. Chem. Soc., 144, 1125-1129 (2022) doi: 10.1021/jacs.1c12108

11.  Z. Wang, X. Zheng, T. Ouchi, T. B. Kouznetsova, H. K. Beech, B. H. Bowser, S. Wang, J. A. Johnson, J. A. Kalow, B. D. Olsen, J. P. Gong, M. Rubinstein, and S. L. Craig, “Toughening Hydrogels Through Force-triggered Chemical Reactions that Lengthen Polymer Strands,” Science, 374, 193-196 (2021). DOI: 10.1126/science.abg2689  Free Full Article Link

10. B. H. Bowser, S. Wang, T. B. Kouznetsova, H. K. Beech, B. D. Olsen, M. Rubinstein, and S. L. Craig, “Single-event Spectroscopy and Unravelling Kinetics of Covalent Domains Based on Cyclobutane Mechanophores,” J. Am. Chem. Soc., 143, 5269-5276, (2021).  DOI: 10.1021/jacs.1c02149

9.  T.-S. Lin, N. J. Rebello, H. K. Beech, Z. Wang, B. M. El-Zaatari, D. J. Lundberg, J. A. Johnson, J. A. Kalow, S. L. Craig, and B. D. Olsen, “PolyDAT: A Generic Schema for Polymer Characterization,” J. Chem. Inform. Modeling, 61, 1150-1163 (2021).  DOI: 10.1021/acs.jcim.1c00028.  **This article was selected to be featured in ACS Editors’ Choice, through which it is sponsored for immediate, open access by ACS due to its potential for broad public interest, an honor given to only one article from the entire ACS portfolio each day of the year.

8.  S. Wang, H. K. Beech, B. H. Bowser, T. B. Kouznetsova, B. D. Olsen, M. Rubinstein, and S. L. Craig, “Mechanism Dictates Mechanics: A Molecular Substituent Effect in the Macroscopic Fracture of a Covalent Polymer Network,” J. Am. Chem. Soc., 143, 3714-3718 (2021). DOI: 10.1021/jacs.1c00265.  Preprint available here.

7.  S. P. O. Danielsen, H. K. Beech, B. M. El-Zaatari, X. Wang, D. J. Lundberg, G. Stoychev, L. Sapir, S. Wang, Z. Wang, T. Ouchi, P. N. Johnson, Y. Hu, S. L. Craig, J. A. Kalow, J. A. Johnson, B. D. Olsen, and M. Rubinstein, “Molecular Characterization of Polymer Networks,” Chem. Rev., 121, 5042–5092 (2021) DOI: 10.1021/acs.chemrev.0c01304

6.  B. M. El-Zaatari, J. S. A. Ishibashi, and J. A. Kalow, “Cross-linker control of vitrimer flow,” Polym. Chem., 11, 5339-5345 (2020) DOI: 10.1039/D0PY00233J

5. N. J. Oldenhuis, P. Qin, S. Wang, H.-Z. Ye, E. Alt, A. Willard, T. V. Voorhis, S. L. Craig, and J. A. Johnson, “Photoswitchable Sol–Gel Transitions and Catalysis Mediated by Polymer Networks with Coumarin‐Decorated Cu24L24 Metal–Organic Cages as Junctions,” Angew. Chem. Int. Ed., 59, 2784-2792 (2020). DOI: 10.1002/anie.201913297  Highlighted on journal cover.

4. Y Gu, J Zhao, and J. A. Johnson, “Polymer Networks: From Plastics and Gels to Porous Frameworks,” Angew. Chem. Int. Ed., 59, 5022-5049 (2020). DOI: 10.1002/anie.201902900

3.  Y. Gu, M. Huang, W. Zhang, M. A. Pearson, and J. A. Johnson, “PolyMOF Nanoparticles: Dual Roles of a Multivalent polyMOF Ligand in Size Control and Surface Functionalization,” Angew. Chem. int. Ed., 58, 16676-16681 (2019). DOI: 10.1002/anie.201910542

2.  T.-S. Lin, C. W. Coley, H. Mochigase, H. K. Beech, W. Wang, Z. Wang, E. Woods, S. L. Craig, J. A. Johnson, J. A. Kalow, K. F. Jensen, and B. D. Olsen, “BigSMILES: A Structurally-Based Line Notation for Describing Macromolecules,” ACS Cent. Sci., 5, 1523-1531 (2019). DOI: 10.1021/acscentsci.9b00476. Highlighted in C&E News and elsewhere.

1.  S. Wang, P. Sergey, M. Rubinstein, and S. L. Craig, “Quantitative Adjustment to the Molecular Energy Parameter in the Lake-Thomas Theory of Polymer Fracture Energy,” Macromolecules, 52, 2722-2727 (2019). DOI: 10.1021/acs.macromol.8b02341